STUDIES ON SOME ALKYL (CYANO) THALLIUM DERIVATIVES

KENJI TANAKA, HIDEO KUROSAWA AND ROKURO OKAWARA

Department of Applied Chemistry, Osaka University, Yamadakami, Suita, Osaka (Japan) (Received January 22nd, 1971)

SUMMARY

Seven new alkyl(cyano)thallium derivatives have been synthesized. The observed linear relation between v(TI-CN) and $v(C\equiv N)$ frequencies in these compounds could be interpreted in terms of the strength of TI-ligand interaction.

INTRODUCTION

There has been much interest in the coordination chemistry of monoorganothallium compounds¹ since we succeeded in synthesizing monoalkylthallium derivatives². Existence of a penta-coordinated thallium atom has been reported in some monoalkylthallium chelates, such as RTIY₂ (R=CH₃ or C₂H₅; Y=tropolonate³, oxinate^{2,3}, SSCNR'₂³ or carboxylates²). Organo(cyano)thallium acetates, R(CN)-TlOAc (R=CH₃⁴⁻⁷, C₂H₅⁶ and C₆H₅⁷) seem also of interest in that they contain comparatively strong Tl-R bonds and a covalently bonded C=N group to form the apparently stable C-Tl⁺-C moiety characteristic of diorganothallium compounds. This paper describes a comparative study of infrared spectra of several new alkyl-(cyano)thallium derivatives to make clear the nature of the Tl-CN bond in these compounds.

EXPERIMENTAL

Methyl- and ethyl(cyano)thallium oxinates

To an aqueous solution (20 ml) of methyl(cyano)thallium acetate⁶ (0.92 g; 3 mmol) was added drop by drop 0.44 g of oxine (3 mmol) in 10 ml of methanol. The yellow precipitates immediately obtained were washed with chloroform and dried under vacuum to give 0.71 g (56%) of $CH_3(CN)Tl(C_9H_8NO)$. Ethyl(cyano)thallium oxinate was prepared similarly from the reaction of Et(CN)TlOAc⁶ with oxine.

Methyl- and ethyl(cyano)thallium tropolonates

An aqueous solution (8 ml) of tropolone (0.24 g; 2 mmol) was added drop by drop to 0.61 g of methyl(cyano)thallium acetate in water (20 ml). The pale yellow powders immediately obtained were dried under vacuum to give 0.43 g (58%) of $CH_3(CN)Tl(C_7H_5O_2)$. Ethyl(cyano)thallium tropolonate was prepared in a manner similar to that for methyl(cyano)thallium tropolonate.

Methyl(cyano)thallium carboxylates

To a solution of methylthallium dipropionate, obtained in situ from MeTiO⁴ (0.24 g) and C₂H₅COOH (0.2 g) in chloroform (20 ml), was added drop by drop a chloroform solution (5 ml) of Pr₃SnCN (0.28 g). The white precipitates obtained were washed with chloroform repeatedly and dried under vacuum to give 0.18 g (54%) of CH₃(CN)Tl(OCOC₂H₅). The other methyl(cyano)thallium carboxylates were also prepared in a similar manner. Properties of these new compounds are tabulated in Table 1.

Spectra

The UV spectra were measured on a Hitachi 124 spectrophotometer using 1 cm cells. The IR spectra were recorded in Nujol mulls using Hitachi EPI-2G (4000-400 cm⁻¹) and Hitachi EPI-L (700-200 cm⁻¹) spectrophotometers, both equipped with gratings. The relevant frequencies of seven new alkyl(cyano)thallium

TABLE 1

PROPERTIES OF ALKYL	(CYANO)THALLIUM	DERIVATIVES,	R	(CN)TI	Y
---------------------	--------	-----------	--------------	---	-----	-----	---

R	Y.	М.р. (°С)	Analysis, found (calcd.) (%)			
			с	н	N	
CH ₃	Tropolonate	168-170	29.57	2.16	3.61	
-		(dec.)	(29.49)	(2.20)	(3.82)	
CH ₃	Oxinate	152-153	34.11	2.44	7.01	
		(dec.)	(33.91)	(2.33)	(7.19)	
CH_{3}	OCOC ₂ H ₅	152-153	18.52	2.51	4.11	
-		(dec.)	(18.86)	(2.53)	(4.40)	
CH ₃	OCOC ₃ H ₂ -i	154-155	21.22	2.75	4.33	
-	5.	(dec.)	(21.67)	(3.03)	(4.21)	
CH ₃	OCOCH ₂ Cl	144-145	13.77	1.42	3.73	
	-	(dec.)	(14.18)	(1.49)	(4.13)	
C ₂ H ₅	Tropolonate	157-158	31.66	2.89	3.63	
	-	(dec.)	(31.56)	(2.65)	(3.68)	
C ₂ H ₅	Oxinate	153-155	35.81	2.84	6.95	
		(dec.)	(35.71)	(2.75)	(6.94)	

TABLE 2

RELEVANT INFRARED FREQUENCIES FOR R(CN)TIY IN NUIOL MULLS

R	Y	v(C≡N) (cm ⁻¹)	v(TI-CN) (cm ⁻¹)	δ(TI−C≡N) (cm ⁻¹)
CH ₃	Tropolonate	2167	352	281
CH ₃	Oxinate	2170	351	290
CH ₃	OCOC₂H₅	2175	365	304
CH ₃	OCOC ₃ H ₇ -i	2177	366	305
CH ₃	OCOCH ₂ Cl	2180	375	298
C ₂ H ₅	Tropolonate	2164	353	275
C ₂ H ₅	Oxinate	2160	334	288
C ₂ H ₅	OCOCH3	2174	358	303

J. Organometal. Chem., 30 (1971) 1-4

Fig. 1. IR frequencies of v(C=N) and v(TI-CN) in R(CN)TIY (in nujol mulls). T = tropolonate, Ox = oxinate.

compounds and $C_2H_5(CN)TIOAc^6$ are given in Table 2. Data for the compounds shown in Table 2 and an available compound*, $C_6H_5(CN)TIOAc^7$ are cited in Fig. 1.

RESULTS AND DISCUSSION

In the UV spectra of methyl- and ethyl(cyano)thallium oxinates in pyridine, the absorption maxima are found at 412 m μ and 408 m μ , respectively, indicating the existence of a chelating oxinate ligand⁸. The infrared spectra of alkyl(cyano)thallium compounds (Table 2) show the characteristic bands due to the covalently bonded $C \equiv N$ group⁹ as well as TI-CN stretching and TI-C \equiv N bending vibrations⁷, and the appearance in other regions is very similar to the spectra of the corresponding dialkylthallium compounds, R₂TIY (Y = OCOR'^{2,7}, oxinate^{8,10}, tropolonate¹⁰). Hence, in all of these alkyl(cyano)thallium compounds in the solid state, the ligand Y may interact with thallium atom in a chelating and/or bridging fashion to give a tetra- or penta-coordinated thallium atom analogous to that in dialkylthallium compounds, R₂TIY¹⁰.

It has been reported that in the monoalkylthallium compounds, RTIY₂³ as well as dialkylthallium derivatives, R_2TIY^{10} , the decrease in both the J(TI-H) values and the v(TI-C) frequencies is interpreted in terms of the increasing thallium-ligand (Y) interaction. In the infrared spectra of the alkyl(cyano)thallium compounds, R(CN)TIY, not all of the TI-R stretching bands could be assigned because these bands are rather weak in intensity and some strong bands due to ligands are overlapped with them. However, the v(TI-CN) bands, which are unambiguously assignable because of their strong intensity, hold a linear relation with $v(C\equiv N)$ frequencies as shown in Fig. 1. From Fig. 1 it is seen that the compounds containing the ligands which interact with thallium more strongly show the smaller v(TI-CN) and $v(C\equiv N)$ frequencies

J. Organometal. Chem., 30 (1971) 1-4.

^{*} The data for CH₃(CN)TIOAc in ref. 7 are excluded because of the splitting of the v(TI-CN).

 $(OCOCH_2Cl > OCOC_nH_{2n+1} > tropolonate > oxinate)$. For some metal cyanides in which a π -interaction, such as is often found in transition metal complexes, does not contribute significantly to the metal-cyanide bond, higher values of $\nu(C=N)$ are observed in compounds having more covalent metal-cyanide bonds⁹. Therefore, the observed decreasing order of both $\nu(C=N)$ and $\nu(TI-CN)$ in some organo(cyano)thallium compounds could simply be interpreted in terms of the decreasing order of TI-CN σ -bond strength which is brought about by the increase in TI-ligand interaction.

REFERENCES

1 H. KUROSAWA AND R. OKAWARA, Organometal. Chem. Rev., Sect. A, 6 (1970) 65.

- 2 H. KUROSAWA AND R. OKAWARA, J. Organometal. Chem., 10 (1967) 211.
- 3 H. KUROSAWA AND R. OKAWARA, J. Organometal. Chem., 14 (1968) 225.

4 H. KUROSAWA AND R. OKAWARA, J. Organometal. Chem., 12 (1968) 241.

5 H. KUROSAWA, T. FUKUMOTO AND R. OKAWARA, Inorg. Nucl. Chem. Lett., 5 (1969) 473.

6 T. FUKUMOTO, H. KUROSAWA AND R. OKAWARA, J. Organometal. Chem., 22 (1970) 27.

7 H. KUROSAWA AND R. OKAWARA, J. Organometal. Chem., 19 (1969) 253.

8 G. FARAGLIA, L. RONCUCCI AND R. BARBIERI, Ric. Sci. Parte 2, Sez. A, 8 (1965) 205.

9 K. NAKAMOTO, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, 2nd ed., 1970, pp. 178-186.

10 M. TANAKA, H. KUROSAWA AND R. OKAWARA, J. Organometal. Chem., 21 (1970) 41.

J. Organometal. Chem., 30 (1971) 1-4